

# Procedure Design Concepts for Logan Airport Community Noise Reduction

R. John Hansman rjhans@mit.edu

Technical support from MIT ICAT students, HMMH, and Massport



## **RNAV Track Concentration**



### Noise Complaints and RNAV Track Concentration

### 

### 





## Alternative Metrics to Capture RNAV Concentration Impacts

- RNAV concentration issue outside of Annual Average DNL 65dB contour
- Analysis performed by this research team at BOS, MSP, CLT, and LHR indicates that Peak Day 50 N<sub>60</sub> represents the noise threshold for complaints





100x

59.9%

## BOS N<sub>60</sub> Count Thresholds

50 N<sub>60</sub> on a peak day appears to capture complaint threshold in dispersion analysis



70.6%

2017 Data

100x

| 5 |
|---|
| 0 |

76.8%

100x



## LHR N<sub>60</sub> Count Thresholds

50 N<sub>60</sub> on a peak day appears to capture complaint threshold in • dispersion analysis



| Peak Day<br>N <sub>60</sub> | Complaints<br>Captured |
|-----------------------------|------------------------|
| 25x                         | 92.1%                  |
| 50x                         | 85.5%                  |
| 100x                        | 66.2%                  |



| Peak Day<br>N <sub>60</sub> | Complaints<br>Captured |
|-----------------------------|------------------------|
| 25x                         | 76.6%                  |
| 50x                         | 70.1%                  |
| 100x                        | 56.5%                  |

Edgy

Harrow

Wembley

Richmond Twickenham

> Kingstor upon Tham



- Collect Data and Evaluate Baseline Conditions
  - Pre and Post RNAV
  - Community Input (Meetings and MCAC)
- Identify Candidate Procedure Modifications
  - Block 1
    - Clear noise benefit, no equity issues, limited operational/technical barriers
  - Block 2
    - More complex due to potential operational/technical barriers or equity issues
- Model Noise Impact
  - Standard and Supplemental Metrics
- Evaluate Implementation Barriers
  - Aircraft Performance
  - Navigation and Flight Management (FMS)
  - Flight Crew Workload
  - Safety
  - Procedure Design
  - Air Traffic Control Workload
- Recommend Procedural Modifications to Massport and FAA
- Repeat for Block 2



## Noise Modeling Framework

Developed under FAA ASCENT COE Project 23 https://ascent.aero/project/

analytical-approach-for-quantifying-noise-from-advanced-operational-procedures/





- Community
  - Community Meetings
  - Massport Community Advisory Committee
  - Public Officials
  - ASCENT (FAA Center of Excellence)
- FAA
  - ATO Air Traffic (HQ, TRACON, Tower, Center, Region)
  - AJV Flight Procedures
  - AFS Flight Standards
  - AEE Environment and Energy
- Airlines
  - Technical Pilot Group
  - A4A
- Manufacturers
  - Boeing



## FAA 7100.41 Working Group

- Performance Based Navigation Implementation Process
- Purpose: To vet procedures with industry and facilities including airlines, ATC, and FAA
- Following FAA 7100.41 working group, procedures will be reviewed by flight standards

Lessons learned:

- Stakeholders may have flyability concerns despite a procedure design being within TERPS criteria
  - RNP SIDS are being further analyzed for situations where RNAV SIDS do not meet the desired objectives
- Designing RNAV and RNP procedures that are similar enough to be used simultaneously relieves ATC of workload burdens and allows for slight additional noise benefits in the RNP procedure



U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Air Traffic Organization Policy



Effective Date: April 3, 2014

SUBJ: Performance Based Navigation Implementation Process

This order provides a standardized five-phase implementation process related to Performance-Based Navigation (PBN) routes and procedures, referred to as the "Performance Based Navigation Implementation Process," which has been deemed compliant by the Office of Safety and meets the requirements set forth by the Federal Aviation Administration (FAA) Air Traffic Organization's (ATO) Safety Management System (SMS).

This order applies to the development and implementation of PBN procedures and routes; specifically, Area Navigation (RNAV)/Required Navigation Performance (RNP) Standard Instrument Departures (SID), RNAV/RNP Standard Terminal Arrivals (STAR), and RNP Authorization Required (AR) Standard Instrument Approach Procedures (SIAP), Q, Tango or "T," and TK (helicopter) Routes, and RNAV/RNP transitions to SIAPs.

Development and implementation of RNAV (GPS, GLS, LPV, etc.) and conventional (ILS, VOR, NDB, etc.) SIAPs, routes, position, and airspace modifications are not covered by this order. This order does not eliminate the SMS process required to decommission existing navigation stations.

This order is to be used in conjunction with and does not supersede other FAA orders and directives related to procedure development and implementation.

Elizabeth L. Ray Vice President, Mission Support Services



# Block 1 Examples: Clear noise benefit, no equity issues, limited operational/technical barriers



## Block 1: Runway 33L RNAV Approach and RNP Approach



## Runway 33L Arrivals: 2010-2015





- RNAV design criteria not able to fully meet noise objectives, so RNP designed to fully meet noise objectives
- RNAV and RNP designed similarly enough and with same feeder fix to allow for simultaneous use by ATC





# 1-A1a 33L RNP Approach FAA 7100.41 Group Final Status: Procedure design supported by FAA 7100.41 Group

### B737-800 60dB L<sub>A,max</sub> Noise Exposure



#### B737-800 60dB L<sub>A,max</sub> Population Exposure

|                                  | 60dB  |
|----------------------------------|-------|
| Straight In                      | 2,954 |
| RNP                              | 0     |
| Difference (Straight In–<br>RNP) | 2,954 |

Implement an overwater RNP approach procedure to Runway 33L that follows the ground track of the jetBlue RNAV Visual procedure as closely as possible.

1-A1b: RNAV Visual procedures are distributed through the Lead Carrier who developed the procedure



### 1-A1a 33L RNAV GPS Approach FAA 7100.41 Group Final Status: Procedure design supported by FAA 7100.41 Group

#### B737-800 60dB L<sub>A,max</sub> Noise Exposure



#### B737-800 60dB L<sub>A,max</sub> Population Exposure

|                                           | 60dB  |
|-------------------------------------------|-------|
| Straight In                               | 2,954 |
| .41 RNAV GPS                              | 396   |
| Difference (Straight In– .41<br>RNAV GPS) | 2,558 |

Implement an overwater RNAV approach procedure to Runway 33L that follows the ground track of the jetBlue RNAV Visual procedure as closely as possible.



# Block 1: Reduced Speed Departures (1-D1)



## Runway 33L Departures: 2010-2015





## Runway 27 Departures: 2010-2015

### 



## 1-D1 Reduced Speed Departures



MIT

ΈΠΤ

- **Baseline**: Typical profile includes thrust reduction at 1,000' AGL followed by an **acceleration to 250 kt climb speed** & **flap retraction**
- Reduced Speed Departure: thrust reduction at 1,000' AGL followed by an acceleration to 220 kt climb speed or minimum clean airspeed to 10,000 ft



### Impact of Climb Speed Matching Airframe to Engine Noise Level Minimizes Total



Aerodynamic noise sensitive to "Wing Cleanliness" coefficient in ANOPP Currently resolving with NASA & exploring clean airframe flight test validation opportunities



## 1-D1 Reduced Speed Departures

| Aircraft    | B737-800                                                                      |
|-------------|-------------------------------------------------------------------------------|
| Metric      | L <sub>A,MAX</sub>                                                            |
| Noise Model | ANOPP                                                                         |
| Notes       | Runway 33L: Maintain<br>Standard Climb Thrust & <b>220</b><br>KIAS to 10,000' |

| B737-800                                  |
|-------------------------------------------|
| Population Exposure (L <sub>A,MAX</sub> ) |

|                         | 60dB    |
|-------------------------|---------|
| Baseline                | 187,106 |
| Reduced Speed Departure | 162,558 |
| Baseline – Alternate    | 24,548  |

Analysis assumes higher airframe noise assumption Working with FAA/NASA to Validate Modeling Assumptions





## 1-D1 Reduced Speed Departures

| Aircraft    | B737-800                                                                      |
|-------------|-------------------------------------------------------------------------------|
| Metric      | L <sub>A,MAX</sub>                                                            |
| Noise Model | ANOPP                                                                         |
| Notes       | Runway 33L: Maintain<br>Standard Climb Thrust & <b>220</b><br>KIAS to 10,000' |

| B737-800                                  |  |  |
|-------------------------------------------|--|--|
| Population Exposure (L <sub>A,MAX</sub> ) |  |  |

|                         | 60dB    |
|-------------------------|---------|
| Baseline                | 178,973 |
| Reduced Speed Departure | 169,397 |
| Baseline – Alternate    | 9,576   |

Analysis assumes higher airframe noise assumption Working with FAA/NASA to Validate Modeling Assumptions





## **Block 2 Examples:** *More complex due to potential operational/technical barriers or equity issues*



## Block 2: Runway 33L and 27 Departures – Re-Introduce Dispersion



### Using Open SIDs or Flexible SIDs to Re-introduce Dispersion





## **Dispersion Concepts**

#### Ease of Implementation:





## Need for Community Decision Process for Procedures with Noise Redistribution



### **Developing Methods to Communicate the Results of Procedure Changes**



### 33L Departures Altitude-Based Dispersion at 3000ft Change in N<sub>60</sub> Compared to 2017



Analysis based on peak day operations; only includes 33L departures

60dB L<sub>A,max</sub> Day, 50dB L<sub>A,max</sub> Night 29



### 33L Departures Altitude-Based Dispersion at 3000ft Change in N<sub>60</sub> Compared to 2017





### 33L Departures Divergent Headings Dispersion Change in N<sub>60</sub> Compared to 2017



Analysis based on peak day operations; only includes 33L departures

N<sub>60</sub> Thresholds: 60dB L<sub>A,max</sub> Day, 50dB L<sub>A,max</sub> Night 31



### 27 Departures RNAV Waypoint Relocation Change in N<sub>60</sub> Compared to 2017



Analysis based on peak day operations; only includes 27 departures

N<sub>60</sub> Thresholds: 60dB L<sub>A,max</sub> Day, 50dB L<sub>A,max</sub> Night 32



## Block 2: Runway 4 Arrivals Delayed Deceleration Approaches



## Runway 4R Arrivals: 2010-2015

### 





## **Delayed Deceleration Approaches (DDAs)**

- In conventional approaches, aircraft decelerate early in the approach
- DDAs provide potential for fuel burn & noise reduction<sup>1</sup>
- In DDAs, initial flap speed velocity held as long as possible during approach to lower drag and thrust requirements
  - Lower thrust levels reduce engine noise
  - Higher velocities increase airframe noise



European A320 Flight Data Recorder Analysis (similar for B757 & B777)<sup>2</sup>



### Standard Approach vs DDA 4000 ft Level Off, B738 (Boeing/Guo Flaps Method)

60 dB Contour Comparison



#### Total Undertrack LAMAX (dB)





### Population Exposure 60 dB 65 dB 70 dB

| L <sub>A,max</sub> | 60 dB  | 65 dB  | 70 dB |
|--------------------|--------|--------|-------|
| Standard           | 36,139 | 16,310 | 4,131 |
| DDA                | 35,085 | 16,242 | 4,131 |
| Difference         | 1,054  | 68     | 0     |

#### **Under Flight Track**







Preliminary example to evaluate methodology only. Should not be considered representative case.



## **Block 2: Runway 4R RNP Approach**

# Select Initial Examples of 4R RNP Approaches



- Initial examples of possible approaches to 4R with flexibility of RNP technology
- RNP technology allows approach to be kept overwater near final approach

## **4R** Arrival RNP – Maximum Overwater

#### B737-800 60dB L<sub>A,max</sub> Noise Exposure



| B737-800<br>Population Exposure (L <sub>A,MAX</sub> ) |        |
|-------------------------------------------------------|--------|
|                                                       | 60dB   |
| Straight In                                           | 32,144 |
| RNP                                                   | 20,754 |
| Difference (Straight In -                             | 44,000 |

11,390

Different routes for 4R arrivals still under analysis

RNP)



## MIT Mechanisms for Community Input Procedures with Noise Redistribution





## **RNAV** and **RNP** Design Space





## Need for Community Decision Process for Procedures with Noise Redistribution





# Discussion