Addressing Aviation Environmental Challenges through Technology and Fuels

Presented to: Aircraft Noise & Emissions Symposium

By: Dr. Jim Hileman Chief Scientific and Technical Advisor for Environment and Energy Office of Environment and Energy Federal Aviation Administration

Date: March 5, 2019

Outline

- Background
- Fuels
- Aircraft Technology
- Conclusion

Outline

- Background
- Fuels
- Aircraft Technology
- Conclusion

Efforts Relating to Aircraft Emissions

Understanding Impacts

- Particulate Matter (PM) measurements and modeling
- Improving atmospheric impact modeling capabilities
- Evaluating current aircraft, commercial supersonic aircraft, unmanned aerial systems, and commercial space vehicles

Mitigation

- Vehicle operations
- Alternative fuel sources
- Modifications to fuel composition
- Aircraft technologies and architecture
- Engine standard (CAEP PM standard)
- Policy measures (CORSIA)

Efforts Relating to Jet Fuel

Coordination

- Public-Private
- Interagency
- State & Regional
- International

Testing

- Support certification testing
- Improve certification process
- Emissions measurements

Analysis

- Environmental sustainability
- Techno-economic analysis
- Future scenarios

ASCENT Center of Excellence (COE)

Lead Universities:

Washington State University (WSU)* Massachusetts Institute of Technology (MIT)

Core Universities:

Boston University (BU)

Georgia Institute of Technology (Ga Tech)

Missouri University of Science and Technology (MS&T)

Oregon State University (OSU)*

Pennsylvania State University (PSU)*

Purdue University (PU)*

Stanford University (SU)

University of Dayton (UD)

University of Hawaii (UH)*

University of Illinois at Urbana-Champaign (UIUC)* University of North Carolina at Chapel Hill (UNC)

University of Pennsylvania (UPenn)

University of Tennessee (UT)*

University of Washington (UW)*

* Denotes USDA NIFA AFRI-CAP Leads and Participants & Sun Grant Schools

Advisory Committee - 58 organizations:

- 5 airports
- 4 airlines
- 7 NGO/advocacy
- 9 aviation manufacturers
- 11 feedstock/fuel manufacturers
- 22 R&D, service to aviation sector

For more information: https://ascent.aero/

ASCENT COE Details

Timeline:

- In 2004, FAA established PARTNER Center of Excellence
- In 2013, FAA established Center of Excellence for Alternative Jet Fuels and Environment, a.k.a. Aviation Sustainability Center or ASCENT, continues PARTNER with expanded efforts on alt fuels

Budget Direction:

 FY2018 & FY2019 budget: FAA directed to use \$15M in RE&D funds for ASCENT COE

	Report 1	Report 2	Report 3		
Time period	9/2013 - 9/2015	10/2015 – 9/2016	10/2016 - 9/2017		
Research Projects	50	54	43		
Publications, Reports, and Presentations	137	119	110		
Students involved	131	112	105		
Industry partners	63	70	72		

Outline

- Background
- Fuels
- Aircraft Technology
- Conclusion

Where do we stand?

- Commercial flights on alternative jet fuels are expanding
- 1.5 million gallons in 2017 from two commercial producers, many commercial user, multiple U.S. airports

U.S. Alternative Jet Fuel Procurements¹

Notes:

1. Includes procurements of fuel by U.S. government, U.S. airlines, manufacturers, and foreign carriers delivered to U.S. airports

Where are we headed? Potential for 250 million gallons/year in five years

Commercial Aviation Alternative Fuels Initiative

A public – private coalition for commercial aviation to engage the emerging alternative fuels industry and government

- Communicate the Value Proposition of Sustainable Aviation Fuels (SAF)
- Enhance the Fuel Qualification Approach

- Implement Frameworks & Share Best Practices
- Develop the U.S. SAF Supply by Aligning Efforts to Enable Commercial Deployment

CAAFI Administrative Leadership Team:

- Steve Csonka, CAAFI Executive Director
- Chris Tindal, CAAFI Assistant Director
- Kristin Lewis (Volpe)
- Peter Herzig (Volpe)
- Nate Brown (FAA)
- Rich Altman, CAAFI Executive Director Emeritus

CAAFI Team Leads:

- C/Q: M. Rumizen (FAA)
- Sustainability: J. Hileman (FAA) & N. Young (A4A)
- Business: J. Heimlich (A4A)
- R&D: M. Lakeman (Boeing), S. Kramer (P&W), & G. Andac (GE)

CAAFI Steering Group: AIA, ACI-NA, A4A, GE, Boeing, P&W, ASCENT, DOE, USDA

Coordination Activities:

U.S. Agency Efforts Across the Supply Chain

Overview of FAA Testing Activities

Support ASTM International evaluation of alternative jet fuels and improve and evaluation process

- Support ASTM certification & qualification testing activities to develop data for new approvals (CAAFI, CLEEN, & ASCENT)
- ASTM Clearinghouse
 (CAAFI & ASCENT)
- OEM Review Process (ASCENT)
- Data Gathering & Library (ASCENT)
- Streamline approval process
 via the National Jet Fuels
 Combustion Program (ASCENT)

D4054 Alternative Jet Fuel Approval Process

Testing Activities Resulting in Fuel Certification

Impact of FAA Testing Activities:

Alternative Jet Fuels are being Certified

- Created ASTM D7566 Specification (2009)
- 5 fuels added to the ASTM specification (2009-present)
 - Sixth approval Q2 2018
 - 6+ additional fuels under evaluation
- Created ASTM D4054 Process and D4054 Users Guide
- Filled "testing gap"
 - FAA funded testing of 7 fuels via first phase of CLEEN program
 - FAA funded testing of 5 fuels via second phase of CLEEN program
- D4054 Clearinghouse established via ASCENT to simplify and accelerate approval process (2016)
 - Facilitate funding from non-US government sources
 - Research report review support
 - Tier 1 & 2 testing for two fuels
 - EU, UK clearing houses in development

Overview of FAA Analysis Activities

Support better understanding of the environmental sustainability, economic costs, and potential supply of fuels from petroleum and alternative sources

- ICAO Support (ASCENT)
 - Greenhouse gas emissions life cycle analysis
 - Sustainability criteria
 - Alternative fuel production potential & policies
- Supply Chain Development (ASCENT, Volpe)
 - Opportunities & challenges for U.S. production
 - Regional supply chain studies (Pacific Northwest, Southeast, Hawaii)
 - Open source tools development (economic evaluation, environmental analysis, siting etc.)
- Modeling Future Scenarios/Supply (ASCENT, Volpe)
- Reducing Emissions and Improving Performance through Fuel Composition Changes

Analyses Supporting Industry and Government Efforts

Impact of FAA Analysis Activities:

Analyses being Used

- Inclusion of alternative jet fuels in DOE Argonne National Lab GREET model
- Renewable Fuel Standard (RFS) "opt in" for Alternative Jet Fuels
- California Low carbon fuel standard (LCFS) "opt in" for Alternative Jet Fuels
- Inclusion of Sustainable Aviation Fuels and Lower Carbon Aviation Fuels within CORSIA
 - Life cycle emissions methodology and values
 - Initial set of sustainability criteria
- Fuel production forecasts widely used by ICAO
- Support DOE funding activities for conversion process development
- Economic analyses being used by industry (e.g., High Freeze Point -HEFA)
- Complementing USDA regional activities
 - Increasing understanding of bottlenecks to production

Outline

- Background
- Fuels
- Aircraft Technology
- Conclusion

Continuous Lower Energy, Emissions & Noise (CLEEN)

- FAA led public-private partnership with 100% cost share from industry
- Reducing fuel burn, emissions and noise via aircraft and engine technologies and alternative jet fuels
- Conducting ground and/or flight test demonstrations to accelerate maturation of certifiable aircraft and engine technologies

	Phase I	Phase II	Phase III*				
Time Frame	2010-2015	2016-2020	2021-2025				
FAA Budget	~\$125M	~\$100M	TBD				
Noise Reduction Goal		25 dB cumulative noise reduction cumulative to Stage 5 and/or reduces community noise exposure					
NO _X Emissions Reduction Goal	60% landing/take-off NO _X emissions	75% landing/take-off NO _x emissions (-70% re: CAEP/8)					
Fuel Burn Goal	33% reduction	40% reduction	-20% re: CAEP/10 Std.				
Entry into Service	2018	2026	2031				
*Notional							

CLEEN III Industry Day: https://faaco.faa.gov/index.cfm/announcement/view/32134

CLEEN III Solicitation: https://faaco.faa.gov/index.cfm/announcement/view/31885

CLEEN Details

Awardees:

- Aurora Flight Sciences (Phase II only)
- Boeing
- Delta Tech Ops, America's Phenix, MDS Coating Technologies (Phase II only)
- General Electric (GE) Aviation

Phase I Technologies:

- 9 Technologies focused on
 - Revolutionary Engine Design
 - Engine redesign
 - Wing technologies
 - Flight Management System Improvements
 - Improved Combustors

- Pratt & Whitney
- Rohr, Inc. / UTC Aerospace Systems (Phase II only)
- Rolls-Royce

Phase II Technologies:

- 14 Technologies focused on
 - Fuselage redesign
 - Engine redesign
 - Wing technology
 - Flight Management System improvements
 - Improved combustion

CLEEN Highlights

CLEEN Phase I

- GE TAPS II Combustor entered fleet in 2016 on LEAP engine
- Pratt & Whitney Gen 2 geared turbofan propulsor technology successfully engine tested
- Boeing ceramic matrix composite nozzle flight tested on a 787 aircraft

CLEEN Phase II

- GE TAPS III Combustor has achieved CLEEN goals on NOx reduction
- Aurora Flight Sciences tested key structural subcomponent that enables massefficient double bubble fuselage
- America's Phenix/Delta TechOps/MDS Coating Technologies currently conducting in-service flight evaluation of fan blade leading edge protective coating
- Boeing completed ground engine test of compact nacelle technology
- Rolls-Royce conducting full annular rig test for RQL low NOx combustion system
- Pratt & Whitney completed rig testing of advanced high pressure compressor technologies

CLEEN Phase I Benefits:

Demonstrated technologies that reduce noise, emissions and fuel burn

Boeing

Adaptive Trailing Edge

- ~ 2% fuel burn reduction
- \sim 1.7 EPNdB cum in some single and twin aisles

CMC Acoustic Nozzle

- ~ 1% fuel burn reduction
- ~2.3 EPNdB cumulative noise margin to Stage 4

Honeywell

Fuel Burn Technologies

CLEEN technologies contributed to ~5% fuel burn reduction as part of a 15.7% fuel burn reduction engine package

Pratt & Whitney

Geared Turbofan Technologies

CLEEN techs expand design space for engine with ~ 20% fuel burn reduction, > 20 EPNdB cumulative noise margin to Stage 4

For more information: http://www.faa.gov/go/cleen

General Electric

TAPS II Combustor (entered fleet in 2016) > 60% margin to CAEP/6 LTO NOx was achieved

FMS/Engine and FMS/ATM Integration (Entered into service - LEAP engine on B737MAX, Airbus A320 Neo aircraft, and GE9X engine on 777X) 0.7-1.0% fuel burn reduction

Open Rotor

~26% reduction in fuel burn (re: 737-800) ~15-17EPNdB cumulative noise margin to Stage 4

Rolls Royce

Ceramic Matrix Composite Turbine Blade Track CMC blade tracks offer > 50% reduction in cooling flow and component weight.

Rolls-Royce – Dual Wall Turbine Airfoil

Dual Wall turbine airfoils provide > 20% reduction in cooling flow and increased operating temperature capability.

CLEEN tech will provide ~1% fuel burn reduction

CLEEN Phase II Technologies

- Aurora Flight Sciences: D8 Double Bubble Fuselage
- Boeing: Structurally Efficient Wing (SEW)
- Boeing: Compact Nacelle Short Inlet / Acoustic Liners
- Delta Tech Ops/MDS Coating Technologies/America's Phenix: Leading Edge Protective Blade Coatings
- GE: TAPS III Combustor ✓
- GE: FMS Technologies
- GE: More Electric Systems and Technologies for Aircraft in the Next Generation (MESTANG)
- GE: Low Pressure Ratio Advanced Acoustics & Liners
- Honeywell: Compact Combustor System
- Honeywell: Advanced Turbine Blade Outer Air Seal (BOAS) System
- Honeywell: Advanced Acoustic Fan Module (TBC)
- Pratt & Whitney: High Pressure Compressor Aero-Efficiency Techs
- Pratt & Whitney: High Pressure Turbine Aero-Efficie
 & Durability Techs
- Rolls Royce: Advanced RQL Low NOx Combustion System
- UTAS: Nacelle Technologies

Technology & Emissions Reduction

• Visible smoke emissions have been eliminated

Boeing 787, 2012

- 50% reduction in CAEP Nitrogen Oxides (NOx) emissions standard since 1995
- CLEEN Program Low NO_X Combustors
 - GE TAPS II Combustor, LTO Nox: 55% below most recent CAEP std PM: 90% below CAEP visibility smoke limit
 - CLEEN II combustor development ongoing with GE, Honeywell, RR

Assessment of CLEEN Technologies

Analytical Evaluation:

- Conducted by Georgia Tech
- Evaluating impact on fuel burn and noise out to 2050
- Modeled most, but not all, Phase I and II CLEEN Technologies
- Evaluation of Phase I captured in two technical reports – results below

Key Results:

report.pdf

- 22 billion gallons of cumulative jet fuel saved - equivalent to 1.7 million cars taken off road between 2025 and 2050
- Contributes to 14% <u>decrease</u> in the land area exposed to DNL 65 dB and greater

FIGURE 40: POTENTIAL FUEL BURN SAVINGS PROVIDED BY CLEEN TECHNOLOGIES MODELED IN THIS STUDY

https://ascent.aero/documents/2018/07/ascent-010-2015-annual-report.pdf/ http://partner.mit.edu/sites/partner.mit.edu/files/PARTNER-Project-36-final-

CLEEN Phase III Overview

• **CLEEN Phase III:** Follow-on to CLEEN Phase I and Phase II Programs focusing on aircraft noise, emissions and energy (five year program with 100% cost share)

• Purpose:

- Mature previously conceived noise, emissions and fuel burn reduction technologies for <u>civil subsonic and supersonic airplanes</u> from TRLs of 3-5 to TRLs of 6-7 to enable industry to expedite introduction of these technologies into current and future aircraft and engines
- Assess jet fuels that could be compatible with the current fleet of aircraft (i.e., they are "drop-in" fuels) that could provide reductions in emissions or improvements in efficiency, including fuels that enable advancements in aircraft and engine design. This includes both conventional and alternative jet fuels.
- CLEEN Phase III technologies expected to be on a path for introduction into commercial aircraft in the 2025-2031 timeframe

CLEEN Phase III Outlook

- Notional CLEEN Phase III timeline (actual timeline in flux due to budget uncertainty)
- Market Survey: https://faaco.faa.gov/index.cfm/announcement/view/31002
- Industry Day: https://faaco.faa.gov/index.cfm/announcement/view/31885
- Industry Day Follow up: https://faaco.faa.gov/index.cfm/announcement/view/32134

2018					2019							
May		.OctNov	/ Dec	Jan	Feb	May .		Aug	Sep	Oct	Nov	Dec
FAA Leadershi Buyin Market	p : Survey	Draft Solicitation Released	Industry Day in Wash DC		CFO Appro	val	CLEEN Release	III Solicitat ed	ion (SIR)	CLEEN Solicita Closes		oposals views
	5 1					20						
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
Proposals Reviews () Announce	Terms & C ed to indiv are negoti	idual	Press Release For CLEEN III Awards		F				

Outline

- Background
- Fuels
- Aircraft Technology
- Conclusion

Conclusion

- Utilizing a comprehensive approach to address environmental challenges
- Working with a broad range of stakeholders to understand issues and develop solutions
- Placing more focus on innovation to overcome noise and emissions challenges
- Continue to seek partnerships for our R&D efforts

