

Effective Helicopter Noise Abatement Operations

Eric Greenwood Department of Aerospace Engineering

The Pennsylvania State University

AEROSPACE ENGINEERING

What help do pilots get to fly quietly?

Bell 212 HAI Fly Neighborly Guide

ROBINSON MODEL R44

NOISE ABATEMENT

To improve the quality of our environment and to dissuade overly restrictive ordinances against helicopters, it is imperative that every pilot minimize noise irritation to the public. Following are several techniques which should be employed when possible.

- 1. Avoid flying over outdoor assemblies of people. When this cannot be avoided, fly as high as practical, preferably over 2000 feet AGL.
- 2. Avoid blade slap. Blade slap generally occurs at airspeeds below 100 KIAS. It can usually be avoided by maintaining 100 KIAS until rate of descent is over 1000 FPM, then using a fairly steep approach until airspeed is below 65 KIAS. With the right door vent open, the pilot can easily determine those flight conditions which produce blade slap and develop piloting techniques to eliminate or reduce it.
- When departing from or approaching a landing site, avoid prolonged flight over noise-sensitive areas. Always fly above 500 feet AGL and preferably above 1000 feet AGL.
- Repetitive noise is far more irritating than a single occurrence. If you must fly over the same area more than once, vary your flight path to not overfly the same buildings each time.
- 5. When overflying populated areas, look ahead and select the least noise-sensitive route.

Robinson R44 Flight Manual Supplement

"Blade slap" is usually Blade-Vortex Interaction noise

- Occurs when rotor tip vortex wake passes near rotor blades
- Rapid change in airloads results in impulsive noise
- Tends to dominate annoyance metrics when it occurs
- Magnitude and directivity strong function of rotor operating condition

2006 NRTC Bell 206 Acoustic Flight Test

You can't trust your ears to tell you what's happening outside the aircraft!

Acceleration has a powerful influence on BVI noise

2007 NRTC Bell 206 Acoustic Flight Test

Rapid maneuvers are often very

noisv

Command & Control Trailer

Microphone on Ground Board

Eglin Maneuver Array

When you can look at it the right way, maneuvering noise doesn't seem different than steady flight

Can we use the steady flight noise data we normally collect to model maneuvers?

Yes! By mapping the rotor aerodynamics to acoustics!

Pitch Up

Advancing Side Roll

Can we use our models to develop useful guidance for pilots?

Descending turns can be very loud!

Deceleration also tends to increase noise.

Noise Abatement Guidance

- Avoid tendency to decelerate during maneuvers, such as turns or pull-ups
- Sustained acceleration leads to high noise levels; however, a little acceleration can add margin to BVI onset during noise sensitive maneuvers
- Keep noise sensitive areas inside of turns
- Avoid descending during turns toward the advancing side of the rotor
- Steeper climbs reduce noise on the ground, so long as the pull-up into climb is gradual

But, is this good advice for all helicopters?

2017 NASA / FAA Noise Abatement Test

R44 Noise Abatement Approaches

Least Effective Approach Flown	Prior Noise Abatement Guidance	Best Approach Flown
Shallow Decelerating Approach	Normal Decelerating Approach	Steep Approach to Flare
-3.5°Flight Path Angle	-4.5°Flight Path Angle	-6°Flight Path Angle
80 KIAS – 20 KIAS, 0.05g decel	80 KIAS– 20 KIAS, 0.05g decel	80 KIAS until 0.15g flare to 20 KIAS
100.3 EPNdB	96.3 EPNdB	90.2 EPNdB
97.2 dBA SEL	93.1 dBA SEL	85.4 dBA SEL

10.3 EPNdB / 12.0 dBA SEL benefit re. Least Effective 6.3 EPNdB / 8.0 dBA SEL benefit re. Historical Guidance

Y, feet

Level Turn

dBA

2019 NASA / FAA Medium Helicopter Noise Abatement Test

Noise Abatement Guidelines

- General-purpose rules of thumb
- Validated for all ten aircraft
- Now included as a part of HAI's Fly Neighborly Curriculum
- Feedback from early adopters indicates that it's working!

Helicoper Noise Abatement Recommendations

Level Flight:

- Second strain and the second strain second s
- 🛰 Straight flight is quieter than turning flight

Turning Flight:

- Turning away from the advancing blade (especially when decelerating) is quieter than turning into the advancing blade
- 🛰 Level turns are quieter than descending turns

Descending Flight:

- 🛸 Straight-in flight is quieter than turning flight
- Steeper approaches are quieter than shallow approaches

Decelerations:

Level flight decelerations are quieter than descending or turning flight decelerations

Maneuvering:

Smooth and gentle control inputs are quieter than rapid control inputs

These recommendations are flight tested and scientifically vetted by the U.S. Department of Transportation and NASA to support the Fly Neighborly Goals.

Take the Fly Neighborly training at: <u>https://go.usa.gov/xQPCV</u> Fly neighborly procedures/recommendations should be executed in the safest manner possible and followed only to the extent safety is not compromised.

The Best Laid Plans...

- ... may be obsolete tomorrow due to changes in:
- Mission objectives
- Vehicle configuration
- Weather
- Air traffic

Real Time Noise Awareness

On Demand Mission Planning

Area:

 Spans 20 x 40 km, similar area to Las Vegas, Rome, or Beijing

Mission:

- Takeoff at Y = 0 km
- Land at Y = 40 km
- Closed airspace from 0 ∞ m

Trajectory:

- About 20 minutes of flight time
- About 10 seconds computer time
- About one minute between nodes

Dynamic Replanning

eVTOL Noise

Rotor-Rotor Interaction (e.g. Boeing PAV)

Rotor-Wing Interaction (e.g. Cora)

Rotor-Stator Interaction (e.g. Bell Air Taxi)

- Electric motors don't help, the engines weren't the problem!
- Lower harmonic noise is less important with lower tip speeds
- Fluctuations in airloads cause loading noise at higher frequency harmonics:
 - Blade-Vortex Interaction (BVI)
 - Rotor-Rotor Interactions
 - Rotor-Wing Interactions
 - Rotor-Stator Interactions
- Rotor broadband will also be more significant:
 - Airfoil Self Noise
 - Blade-Wake Interaction

Vehicle Configuration Control

- Most eVTOL have nonunique trim
- These nonunique trim states can be exploited for noise reduction
- "Acoustically-aware" flight controls should optimize vehicle configuration for best balance between noise exposure and performance

XV-15, 70 KIAS, -6° FPA

Concluding Remarks

- A decade of sustained research in low noise helicopter operations is yielding real reductions in community noise exposure
- Real-time noise modeling will soon provide operators with effective tailored guidance
- "Acoustically-aware" autonomy will eventually enable ultra-low-noise VTOL operations in and around communities

Fin

2016 NASA / Army Altitude Variation Test

AS350

EH-60L

4000 feet Amedee Army Auxiliary Airfield

7000 feet USMC Mountain Warfare Training Center

Sea Level US Navy Salton Sea Facility

Ambient conditions can change noise for the "same" condition by a factor of two!

130 KIAS

Nondimensional

Motion moves the wake up into the rotor... and then right back down through it

But, with a good wake model, we *can* predict the noise

