UC Davis Aviation Noise and Emissions Symposium 2020

Community Group Meeting

SUNDAY MARCH 1, 2020

Agenda

▶ INTRO

Case Studies on Community Involvement

▶ Presentation:

Data Sources and Data Analysis Tools

Speakers:

Gene Reindel HMMH

Don Jackson The MONA Project

► Group Discussion

How to measure success, using risk management concepts as a framework Moderator Jennifer Landesmann

Overview/Introduction of Data Sources

- Federal Aviation Administration
 - Flight track and aircraft identification data
 - National Offload Program (NOP) no longer available in 2020
 - System Wide Information Management (SWIM)
 - Aircraft operations data
 - Historical: Air Traffic Activity System (ATADS)
 - Forecast: Terminal Area Forecast (TAF)
- Airport Noise and Operations Monitoring System
 - Flight tracks and aircraft identification data
 - Weather data
 - Complaint data
 - Noise measurement data
 - Public web portals

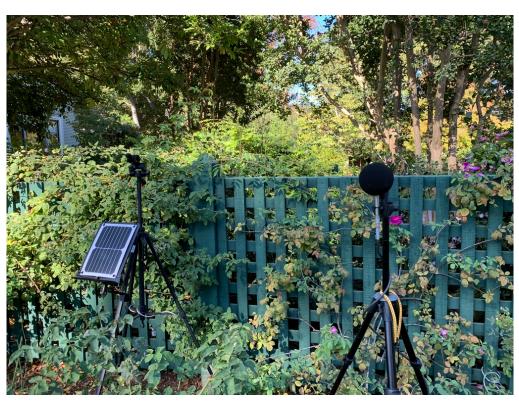
The Metroplex Overflight Noise Analysis Project (MONA)

- Principals:
 - > Juan J. Alonso, Don Jackson, Tom Rindfleisch
- Objectives/Goals:
 - Provide objective data, reports, and analyses to stakeholders and policy makers to inform decision making
 - Objective, factual, archival, real-time measurements of SF Bay Area regional aircraft traffic and the resulting ground noise impact
 - Public, web-accessible visualizations and analyses of data to facilitate understanding of observations and to monitor changes and anomalies, utilizing our archived measurements and collected data.

Data Sources: What Do We Collect?

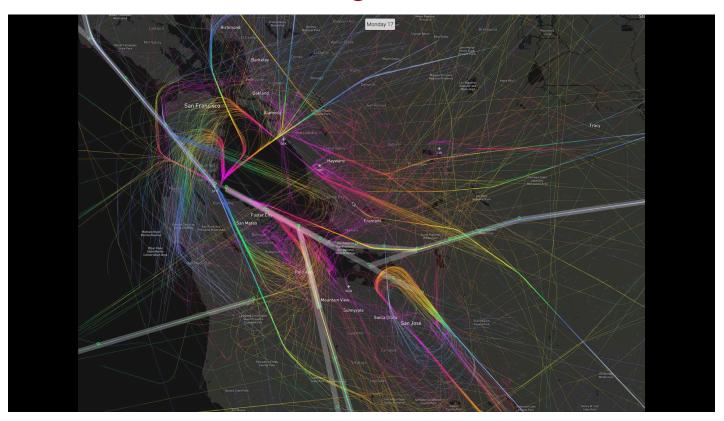
- Aircraft positions and flights, sources:
 - ADS-B receiver network (real-time), using FlightAware with MONA enhancements
 - > FAA SWIM data feeds for flight metadata (work in progress)
 - FAA historical RADAR records (via FOIA filings)
- Sound level measurements, sources:
 - MONA Sound-Level Monitor (SLM) network (real-time)
- Other data sources:
 - FAA Coded Instrument Flight Procedures (CIFP):
 STAR/Approach/SID procedures, waypoints, airports, runways
 - > FAA Registry:
 - Provides airframe, engine, and ownership
- All data/metrics are automatically transmitted to MONA servers, and ingested/archived into databases

Example ADS-B and SLM Deployment



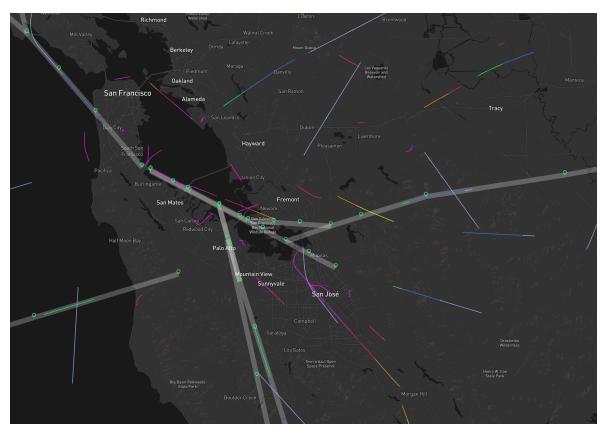
Stanford University

Co-located SLM Deployments: SFO and MONA

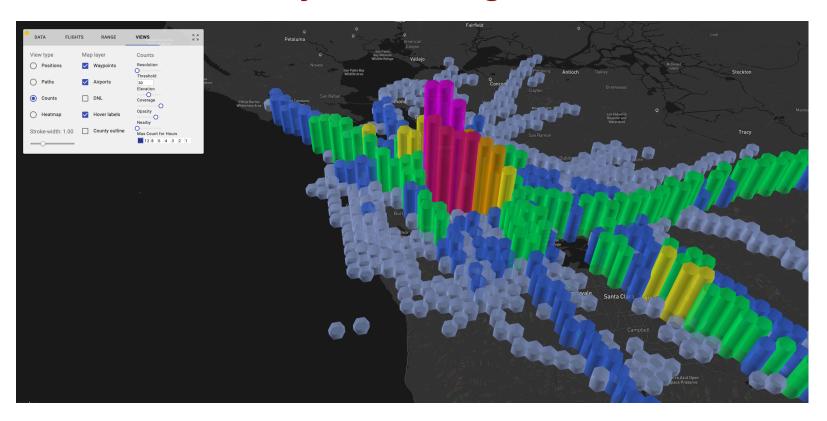


Stanford University

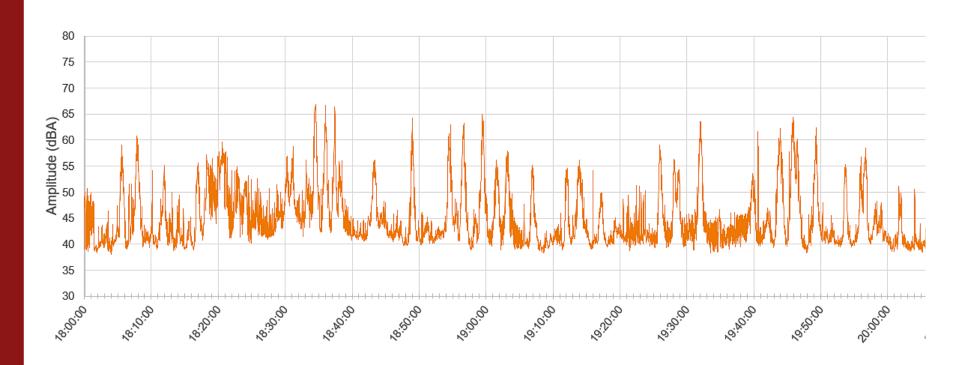
MONA Analysis and Reporting Tools


- Web application to visualize historic and real-time flight traffic/patterns
- · Combine SLM measurements with aircraft position data to assign noise peaks with aircraft
- Automatically generate AEDT noise studies from actual flight tracks, and compare to measured sound levels (work in progress)

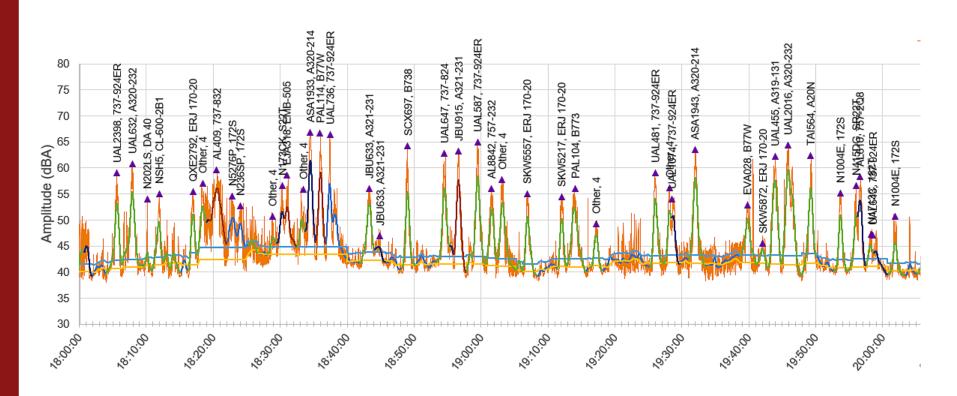
Visualization of Historic Flight Traffic/Patterns



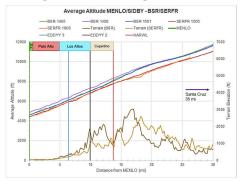
Stanford University


Real-Time Visualization of Aircraft Traffic

Aircraft Counts/Day Over Hexagonal Grid

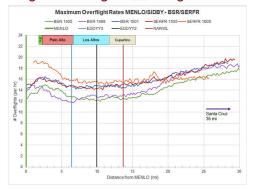


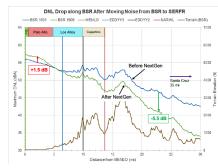
Sound Profile Analysis: Raw Profile, 6/13/19


Stanford University

Processed Noise Profile, 6/13/19

Example Analyses


Average Altitudes along BSR/SERFR


DNL Increase on SERFR after BSR to SERFR

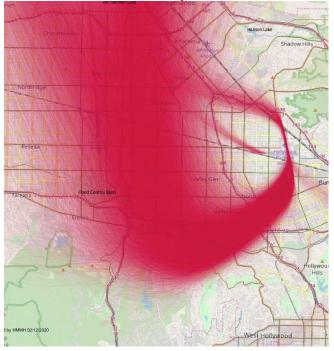
Average # Overflights/Hr along BSR/SERFR

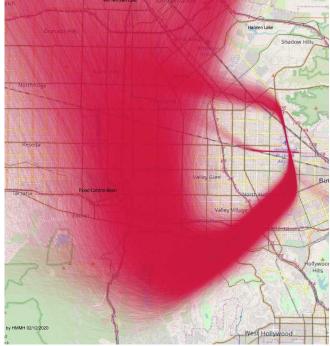
DNL Decrease on BSR after BSR to SERFR

Stanford University

Data and Analysis Tools

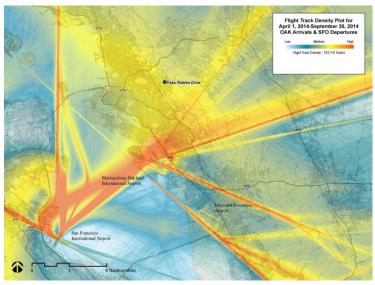
- Visualization of flight tracks
- Flight track gates
- Flight track manipulation
- AEDT

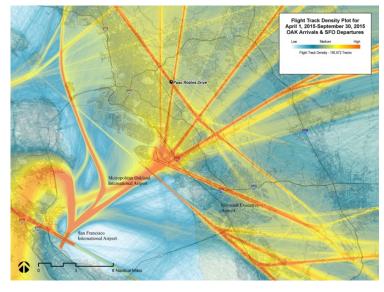



Visualization of Flight Tracks

Full Year of Departure Flight Tracks Hollywood Burbank Airport

- 2007 on the left
- 2019 on the right

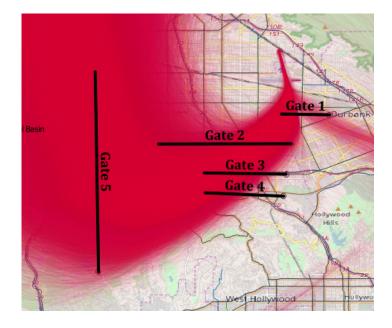




Flight Track Density Plots SFO and OAK

- 2014 (Pre-Metroplex) on the left
- 2015 (Post-Metroplex) on the right

Flight Track Gates

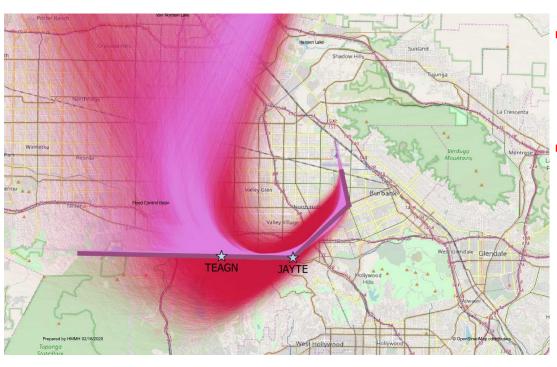


Gate Analysis: Hollywood Burbank Airport Runway 15 Jet Departures

	2007		2010		2015		2019	
Gate	Total Tracks	Avg. Altitude (Ft. MSL)						
1	28,937	1,773	19,629	1,782	24,467	1,884	40,544	1,868
2	41,176	2,752	28,822	2,887	29,718	2,758	42,413	2,618
3	25,766	3,364	16,806	3,492	22,428	3,384	39,492	3,298
4	5,302	3,659	3,469	3,680	7,572	3,748	20,514	3,704
5	28,390	6,093	17,908	6,413	20,739	6,247	35,706	6,202

Gate Placement:

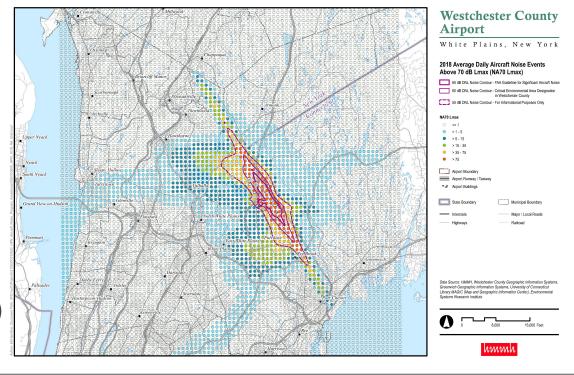
- Gate 1: Jeffries Ave/Luther Burbank Middle School (east/west)
- Gate 2: W. Magnolia Blvd (east/west)
- Gate 3: Highway 101 (east/west)
- Gate 4: Ventura Blvd (east/west)
- Gate 5: Van Nuys Blvd to Stone Canyon Reservoir (north/south)



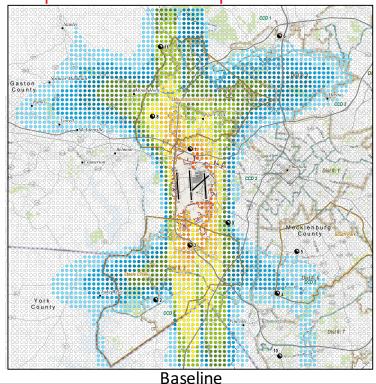
Flight Track Manipulation

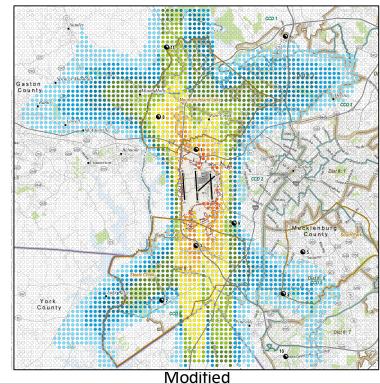
Flight Track Manipulation (Proposed RNAV) Hollywood Burbank Airport

- Existing jet departure tracks from Runway 15 along with the FAAproposed procedure from the October 2018 CatEx
- Showing approximation of aircraft flight tracks (purple) on the FAA's proposed procedure

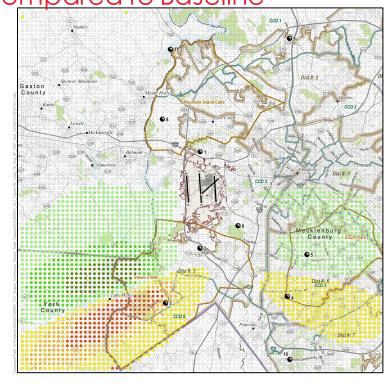

AEDT

Federal Aviation Administration Aviation Environmental Design Tool (AEDT)


AEDT: Contours (DNL) and Grids (N70)


- Day-Night Average Sound Level (DNL) contours: 55, 60 and 65 dB
- Number of noise events above 70 dB
- Using a full year of flight track and aircraft identification data at Westchester County Airport (HPN)

Number of Noise Events Above 70 dB (N70) Analysis: 2018 Operations with Change in Initial Heading on South Flow Departures Compared to Baseline



Number of Noise Events Above 70 dB (N70) Analysis: Difference - 2018 Operations with Change in Initial Heading on South Flow Departures Compared to Baseline

N70 Difference Interval (Events)	Count of Grid Points / % Change	Count of Population / % Change		
Less than -75	0 / 0.0%	0 / 0.0%		
-75 to -25	95 / 1.5%	2,659 / 0.4%		
-25 to -10	194 / 3.1%	5,238 / 0.7%		
-10 to -1	890 / 14.1%	104,091 / 14.1%		
-1 to 1	4,285 / 68.0%	528,917 / 71.8%		
1 to 10	531 / 8.4%	80,386 / 10.9%		
10 to 25	176 / 2.8%	9,835 / 1.3%		
25 to 75	130 / 2.1%	5,659 / 0.8%		
Greater than 75	0 / 0.0%	0 / 0.0%		
Total	6,301 / 100.0%	736,785 / 100.0%		

- 1,179 Grid points (18.7%) / 111,988 people (15.2%) would experience fewer events above 70 dB Lmax with change in initial heading 837 Grid points (13.3%) / 95,880 people (13.0%) would experience more events above 70 dB Lmax with change in initial heading

Columbia University's Mailman School of Public Health

STUDY OF TNNIS FLIGHT PATH, QUEENS NY

A mathematical model conducted by a team from Columbia University Mailman School of Public Health compared the costs and quality-adjusted life years (QALYs) gained associated with reverting to pre-2012 flight patterns seen prior to the year-round use of TNNIS.

"The Trade-Off between Optimizing Flight Patterns and Human Health: A Case Study of Aircraft Noise in Queens, NY, USA.

Zafari Z^{1,2}, Jiao B³, Will B⁴, Li S⁵, Muennig PA⁶.

Discussion - How to measure success, A Risk Management Framework "TRAITS"

- ► TRACK
- ► REPORT
- ► ANTICIPATE
- ► INTERVENE
- ► TEST
- ► SHARE