Mobile ObserVations of Ultrafine Particles (MOV-UP)

Aviation Noise & Emissions Symposium 2020

Elena Austin, Timothy V. Larson, Edmund Seto

 Ultrafine particles
 Combustion particles, traffic emissions etc.
 < 0.1 µm (microns) in diameter

PM2.5 Combustion particles, organic compounds, metals, etc. < 2.5 µm (microns) in diameter</p>

PM10
 Dust, pollen, mold, etc.
 < 10 µm (microns) in diameter

A selection of cities with published studies of airport UFP impacts

Distance from airport to monitoring site							
1 to 10 km	> 10 km						
London, England	Los Angeles, CA						
Los Angeles, CA	Amsterdam, NL						
Norwich, England	Atlanta, GA						
Boston, MA	New York, NY*						
Warwick, RI							
	from airport to monitor 1 to 10 km London, England Los Angeles, CA Norwich, England Boston, MA Warwick, RI						

*La Guardia

Important characteristic of Ultrafine Particles

- They have a larger surface area, relative to their size.
- They are small enough to enter the bloodstream, cross the placenta, and cross the blood-brain barrier.
- Because they are small, they have very little mass.
- They are measured differently than PM_{2.5} (count for UFP vs mass for PM_{2.5})

Ultrafine Particles (UFPs)

Ultrafine Particles unregulated but potentially important

Health Effects more uncertain compared to $\rm PM_{2.5}$, but there is a growing body of evidence

Diesel Engines emit ultrafine particles resulting in elevated levels near major roadways (within 200 meters downwind)

Jet aircraft directly emit "ultra" ultrafine particles (< 30 nanometers)

Approaches to reduce noise do not necessarily address UFP

MOV-UP Study

Study Objectives

- Study the implications of air traffic at Sea-Tac
- Assess the concentrations of ultrafine particulate matter (UFP) in areas surrounding and directly impacted by air traffic
- Distinguish between and compare concentrations of aircraftrelated and other sources of UFP
- Coordinate with local governments, and share results and solicit feedback from community

Community Engagement

Funding for the MOV-UP study was provided to the University of Washington by a proviso in the state budget.

Study Advisory Group: Community, government and academic representation. Their role was to provide feedback on the study design, methods and findings.

Frequent communication with community

-presentations

-forums

-media coverage

Study Region: Mobile Transects and Fixed Monitoring Site Locations

SEATAC (2018)
8th busiest U.S. airport
49.8 million passengers
>432,315 metric tons of air cargo

Fixed Site Monitoring

Fixed Monitoring Results: Traffic Related Pollutants

Smaller Sized Particles Near SeaTac Associated with Jet Landings

11.5 nm Particle Diameter

Mobile Monitoring

Mobile Monitoring Results: Monitoring Summary

	Sampling	Second	Start	End	$T_{omp}(\mathbf{F})$	RH	South Flow
	Day	Car (%)	Hour	Hour	Temp (r)		Operation
Winter	21 days	62%	14:00	16:30	51F	62%	59%
Spring	14 days	71%	11:00	16:30	65F	50%	52%
Summer	16 days	81%	11:00	17:00	73F	47%	75%
Fall	12 days	83%	11:00	17:00	54F	78%	91%

Frequency of counts by wind direction (%)

Wind roses indicate the speed and direction the wind is blowing "from".

Traffic Related Pollutants Spatial Distribution

Total Particle Number*

Black Carbon

* Total Particle Number refers to particles with 10 - 1,000 nm diameter

Distinguish Sources

- Goal: Combining particle size and other pollutant characteristics collected from mobile monitoring to characterize the source of pollutant
- Method: Perform a Principal Component Analysis (PCA) with varimax-rotation to identify features or "fingerprints" that reflect pollutant source.
- **Result:** We can plot the contributions from each feature on a map

Pollutant Features

- POSITIVELY correlated with Black Carbon and Total Particle Number Concentration
- Median diameter from
 Nanoscan is
 approximately
 30-40 nm

- POSITIVELY correlated with ultra-UF particles
- NEGATIVELY correlated with Black Carbon
- Median diameter from Nanoscan is approximately 15 nm

"Ultra-UFP" tracks landing direction

Landing from the North

"Roadway" is invariant to landing direction

Landing from the North

Des Moines

Predicted* Median Income Aircraft Feature

**Average over all hours on all sampling days

Summary

- Ultrafine particles (UFP) are emitted from both traffic and aircraft sources.
- Total concentration of UFP (10 1000 nm) did not distinguish roadway and aircraft features.
- The spatial impact of traffic and aircraft UFP emissions can be separated using a combination of mobile monitoring and standard statistical methods.
- There are key differences in the particle size distribution and the black carbon concentration for roadway and aircraft features.
- Fixed site monitoring confirms that aircraft landing activity is associated with a large fraction of particles between 10-20 nm.
- Mobile derived Fuel Based Emissions Factor (# Ultra UF/kg_{Fuel}) may lead to future air quality modeling scenarios (Findings in the Project Report).

MOV-UP Project Website <u>https://deohs.washington.edu/mov-up</u>

Uncertainties and Caveats

- In this study, there was no measured single indicator of aircraft impact.
- This study provides information on the spatial distribution of ambient air quality impacts but does not provide a precise way to assign exposure estimate to specific locations or populations.
- This study provides a representative sample of pollutant distribution over 2018. Important uncertainties emerge in trying to predict distributions for past or future years.

Acknowledgements

- Study Team Elena Austin, Jianbang Xiang, Timothy Gould, Sukyong Yun, Jeffry Shirai, David Hardie, Michael Yost, Timothy V Larson, Edmund Seto
- Study Advisory Committee
- Funder: WA State
- Contact: Elena Austin
- elaustin@uw.edu

MOV-UP Project Website https://deohs.washington.edu/mov-up

